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Abstract Learning from imbalanced data is an important and common prob-
lem. Decision trees, supplemented with sampling techniques, have proven to
be an effective way to address the imbalanced data problem. Despite their
effectiveness, however, sampling methods add complexity and the need for
parameter selection. To bypass these difficulties we propose a new decision
tree technique called Hellinger Distance Decision Trees (HDDT) which uses
Hellinger distance as the splitting criterion. We analytically and empirically
demonstrate the strong skew insensitivity of Hellinger distance and its ad-
vantages over popular alternatives such as entropy (gain ratio). We apply a
comprehensive empirical evaluation framework testing against commonly used
sampling and ensemble methods, considering performance across 58 varied
datasets. We demonstrate the superiority (using robust tests of statistical sig-
nificance) of HDDT on imbalanced data, as well as its competitive performance
on balanced datasets. We thereby arrive at the particularly practical conclu-
sion that for imbalanced data it is sufficient to use Hellinger trees with bagging
without any sampling methods. We provide all the datasets and software for
this paper online (http://www.nd.edu/~dial/hddt).

1 Introduction

Decision trees are among the more popular classification methods, primarily
due to their efficiency, simplicity, and interpretability. While individual trees
can be limited in their expressiveness due to using only axis-parallel splits, this
shortcoming can be mitigated by using an ensemble of decision trees as they
have demonstrated statistically significant improvements over a single decision
tree classifier [1–4]. When demonstrating the success of decision trees, however,
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most of the work has focused on relatively balanced datasets. Exacerbating
this oversight, previous work has demonstrated the innate weakness of the
traditional decision tree splitting criteria (i.e., entropy and Gini) when datasets
have high degrees of class imbalance [5–7] due to their sensitivity to skew.

One of the weaknesses of decision trees is dealing with imbalanced datasets.
A dataset is considered “imbalanced” if one class (the majority class) vastly
outnumbers the other (minority class) in the training data1 [8]. Due to the
nature of learning algorithms, class imbalance is often a major challenge as
it impedes the ability of classifiers to learn the minority class concept. This
is due to the fact that when learning under highly imbalanced training data,
classifying all instances as negative will result in high classification accuracy.

To overcome the class imbalance problem, sampling methods have become
the de facto standard for improving the performance of these decision tree
algorithms [9–15]. Although successful, they add an additional — and some-
times awkward — responsibility for determining the sampling parameters. We
are therefore motivated to ask: Can we improve the performance of decision
trees on highly imbalanced datasets without using sampling?

In response to this question we previously proposed Hellinger distance as
a decision tree splitting criterion to build Hellinger distance decision trees
(HDDT) [7]. We compared this method, in single trees, to C4.4 (gain ratio)
and CART (Gini), however since CART demonstrated consistently inferior
performance to both other algorithms, we omit it here.

We would like to note that we use C4.4 [16] — unpruned, and uncollapsed
C4.5 with Laplace smoothing at the leaves — as opposed to traditional C4.5;
that is, C4.4 is C4.5 with slightly modified default parameters. While the
decision to modify the default parameters is a popular choice in the community
when applying to imbalanced data, most people still use the term C4.5 [17–19].
As we believe the term C4.4 helps disambiguate the two learning methods, we
adopt the terminology and recommend its use.

The use of C4.4 instead of C4.5 is supported by prior research demonstrat-
ing that C4.4 results in improved class probability estimates [19] and is more
apt for highly imbalanced datasets. In order to ensure fair comparisons, we
also build uncollapsed, unpruned HDDTs with Laplace smoothing.

In this paper we extend the comparative analysis between Hellinger dis-
tance and gain ratio as decision tree splitting criteria, investigate its effective-
ness in ensembles of trees, and further demonstrate the robustness of Hellinger
distance to high degrees of class imbalance We also include a number of ensem-
ble and sampling methods to arrive at a compelling conclusion: we recommend
bagged HDDTs as the preferred method for dealing with imbalanced datasets
when using decision trees. This conclusion is supported by (to the best of our
knowledge) one of the most comprehensive experimental studies on decision
trees for imbalanced datasets to date. This is not only in terms of datasets
considered (a total of 58) but also in the techniques applied (HDDT, C4.4, two

1 Note: By convention, the negative class is the majority class, and positive class is the
minority class.
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bagging variants, boosting, SMOTE, and several combinations of techniques)
[7,3,20,2,21,4]. Our conclusions are supported by comparing the performance
of these different classifiers using robust statistical significance tests [22,23].

In summary, the key contributions of this paper are:

1. Expand on the analysis of Hellinger distance as a decision tree splitting
criterion to establish the robustness and skew insensitivity first presented
in [7] (Section 2). The Hellinger Distance Decision Tree (HDDT) algorithm
is presented in Section 3.

2. Empirical evaluation and analysis of the performance of HDDT and C4.4
under a comprehensive framework over a variety of measures: single trees
versus ensembles, both with and without sampling. A number of different
ensemble methods – bagging, boosting, majority bagging – are used. The
sampling methods considered in this paper include SMOTE and under-
sampling. The sampling amounts are determined via the wrapper method
from [14] (Section 4).
The analysis is broken into three parts. Part one includes only binary class
imbalanced datasets. Part two includes multiple class datasets with differ-
ent proportions of imbalance across the classes. In both parts we consider
Area Under the ROC Curve (AUC) and F1-measure as the performance
criteria. Finally, part three is comprised of balanced datasets in order to
evaluate and compare HDDT versus C4.5 for relatively balanced class dis-
tributions with standard overall accuracy as the performance measure (note
that we use the original C4.5 with balanced datasets, which is a standard).
A total of 58 datasets are used in this paper (as compared to only 19 binary
class datasets in our prior work [7]).

3. Establish HDDT as a general decision tree algorithm broadly applicable to
both imbalanced and balanced datasets, achieving statistically significantly
superior performance over C4.4 for imbalanced datasets and comparable
performance (neither significantly better nor worse) to C4.4 for balanced
datasets. We also show that HDDTs, when used with bagging or boosting,
remove the need of sampling methods, which is a big jump forward for
learning decision trees for imbalanced data.

2 Hellinger Distance as a Splitting Criterion

Hellinger distance is a measure of distributional divergence [24,25] which was
first applied as a decision tree splitting criterion in [7]. Let (Ω,B,ν) be a
measure space [26], where P is the set of all probability measures on B that
are absolutely continuous with respect to ν. Consider two probability measures
P1, P2 ∈ P . The Bhattacharyya coefficient between P1 and P2 is defined as:

p(P1, P2) =

∫

Ω

√

dP1

dν
· dP2

dν
dν. (1)
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The Hellinger distance is derived using the Bhattacharyya coefficient as:

hH(P1, P2) = 2

[

1 −
∫

Ω

√

dP1

dν
· dP2

dν
dν

]

=

√

√

√

√

∫

Ω

(

√

dP1

dν
−
√

dP2

dν

)2

dν.

(2)

Within machine learning, we typically compare conditional probabilities
stemming from discrete counts of data, rather than continuous functions. The
information available may often be expressed as P (Y = y|X = x) (which we
abbreviate to P (Yy|Xx)) where y is drawn from some finite set of classes
like +,− and x is drawn from a finite set of attribute values V such as
{red, blue, green}. In the case of continuous features, a variety of splits are
investigated and the set of such values becomes {left, right}. Since we are in-
terested in evaluating over a countable rather than continuous space, we may
convert the integral in Equation 2 to a summation of all values and reexpress
our distributions within the context of the above conditional probability as:

dH(P (Y+), P (Y−)) =

√

∑

i∈V

(

√

P (Y+|Xi) −
√

P (Y−|Xi)
)2

. (3)

This presents a distance which quantifies the separability of two classes of
data conditioned over the full set of feature values. (As an aside, we note a
strong relationship between this metric and confidence-rated boosting [27].)
This lends itself as a decision tree splitting criterion with the following prop-
erties:

1. dH(P (Y+), P (Y−)) is bounded in [0,
√

2]
2. dH(·, ·) is symmetric and non-negative, i.e.,

dH(P (Y+), P (Y−)) = dH(P (Y−), P (Y+)) ≥ 0
3. squared Hellinger distance is the lower bound of KL divergence [28].

One contribution of this paper is to demonstrate the skew insensitivity of
Hellinger distance (Section 2.1). As can be seen from Equations 2 and 3, class
priors do not influence the Hellinger distance calculation, indicating a degree
of skew insensitivity. Also, it essentially captures the divergence between the
feature value distributions, given the different classes. We will further study
how it manages skew in the next section.

2.1 Skew Insensitivity

In our prior work [7], we demonstrated the skew insensitivity of Hellinger
distance as a decision tree splitting criterion by considering the shape of the
function. In this section we will revisit these considerations, and then extend
this analysis by demonstrating the effects of skew in a synthetic example.
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2.1.1 Comparing isometrics

Vilalta and Oblinger [29] proposed the use of isometric lines to define the
bias of an evaluation measure by plotting contours for a given measure over
the range of possible values. In their paper they presented a case study on
information gain, and while they did not produce isometrics under class skew,
they note that “A highly skewed distribution may lead to the conclusion that
two measures yield similar generalization effects, when in fact a significant
difference could be detected under equal class distribution [29].” Subsequently
Flach [5] connected the isometric plots to ROC analysis, demonstrating the
effects of true and false positives on several common evaluation measures:
accuracy, precision, and F -measure. In addition, he also presented isometrics
for three major decision tree splitting criteria: entropy (used in gain ratio)
[30], Gini index [31], and DKM [32]. Flach also established the effect of class
skew on the shape of these isometrics [5].

This can be extended to Hellinger distance as follows:

dH(tpr, fpr) =

√

(
√

tpr −
√

fpr)2 + (
√

1 − tpr −
√

1 − fpr)2 (4)

We adopt the formulation of Flach in this paper; that is, the isometric plots
show the contour lines in 2D ROC space representative of the performance of
different decision tree splitting criteria with respect to their estimated true and
false positive rates, conditioned on the skew ratio (c = neg/pos). A decision
tree split — for the binary class problem — can be defined by a confusion
matrix as follows. A parent node will have POS positive examples and NEG
negative examples. Assuming a binary split, one child will carry the true and
false positive instances, and the other child will carry the true and false neg-
ative instances. The different decision tree splitting criteria, as considered in
this paper, can then be modeled after this impurity (distribution of positives
and negatives). Thus, in the isometric plots, each contour represents the com-
binations of true positives and false negatives that will generate a particular
value for a given decision tree splitting criterion. For example, the 0.1 contour
in Figure 2.1.1 indicates that the value of information gain2 is 0.1 at (fpr, tpr)
of approximately (0%, 20%), (20%, 60%), (80%, 100%), (20%, 0%), (60%, 20%),
(100%, 80%), and all other combinations along the contour. In Figures 2.1.1
and 2.1.1, information gain is observed as contours formed in ROC space un-
der a (+ : −) skew of (1 : 1) and (1 : 10), respectively. As the skew increases,
the isometrics become flatter and information gain will operate more poorly as
a splitting criterion. Vilalta and Oblinger [29] and Flach [5] observed similar
trends. Note that we only considered the two class proportions of (1 : 1) and
(1 : 10) to highlight the impact of even a marginal class skew. We point the

2 Note that for these plots show information gain instead of gain ratio. The choice of
information gain over gain ratio is merely for consistency with [5], however, as gain ratio
and information gain are equivalent over binary splits.
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(a) Information gain isometrics for an
imbalance ratio of (1:1).
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(b) Information gain isometrics for an
imbalance ratio of (1:10).
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(c) Hellinger distance isometric for any
imbalance ratio

Fig. 1 Isometrics for information gain and Hellinger distance over a variety of class skews.

interested reader to the paper by Flach for a more elaborate analysis of class
skew using isometrics on these three metrics [5].

Given the nature of information gain’s isometric plots, we now turn our
attention to Hellinger distance. First, using Flach’s model of relative impu-
rity allowed us to derive Equation 4 as an extension to Hellinger distance. In
Figure 2.1.1, we see the isometric plots for Hellinger distance. While infor-
mation gain showed dependence on skew in its isometric plots, we note that
the Hellinger distance isometric plots do not deviate from the contours with
varying class skew (c). This is due to the fact that there is no factor of c in
the relative impurity formulation. The isometric contours for Hellinger dis-
tance are therefore unaffected by an increase in the class skew rate, making
Hellinger distance much more robust in the presence of skew.

2.1.2 Synthetic Example

Given the analytic results from the previous section, we now wish to gain
a more intuitive understanding of the potential impact of selecting between
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Hellinger distance and gain ratio as a decision tree splitting criteria. Consider
an artificially created dataset with two classes generated by separate Gaussian
distributions of equal standard deviation with means separated by 2.5 standard
deviations. In our first scenario, we simulate the effects of two equal distribu-
tions by generating 10,000 examples per class (the experiment for each class
distribution is repeated over 1,000 repetitions to ensure robustness against
random noise). For each repetition, we calculate the splits which are empiri-
cally chosen by C4.4, and HDDT, as well as the split which maximizes Area
Under the ROC Curve (AUC) (see Section 5.2 for more details), and deter-
mine the average for each. This experiment is illustrated in Figure 2.1.2, with
each vertical line indicating the average for a particular optimized split and
with the error bars representing one standard deviation for each split. We note
that the error bars for all three ideal splits overlap the Bayesian optimal split
(where error is minimized) i.e., where the two distributions intersect. Thus,
when data is balanced we expect HDDT to perform similarly to C4.4 when
determining both accuracy and AUC, a result confirmed later in this report.
We note that the AUC boundary is also the boundary for F -measure in this
setting.

In Figure 2.1.2 we introduce a 2:1 class imbalance by sampling only 5000
points from the left distribution. We note the error bars for C4.4’s split,
HDDT’s split, and AUC all overlap with each other, although not with that of
the Bayesian optimal. This indicates that these splitting measures may not be
ideal for determining accuracy, but should be theoretically optimal for AUC.
We further increase class skew in Figure 2.1.2 to a ratio of 10:1. Here we be-
gin to notice some separation between the splits of C4.4 and HDDT, as their
error bars no longer overlap. The HDDT split region intersects with that of
AUC, but not of accuracy. C4.4’s split region, on the other hand, intersects
with neither AUC nor the Bayesian optimal. Finally, we present Figure 2.1.2,
which exhibits a class imbalance ratio of 100:1. C4.4 once again chooses a split
region which overlaps neither the Bayesian optimal split nor the AUC split,
while HDDT’s split and AUC again overlap. This suggests that at levels of ex-
treme imbalance, HDDT’s can be expected to produce trees with better AUC
than C4.4, and that C4.4 does not not choose ideal splits for AUC or accuracy.
This conclusion is supported by observations in [7], which note that whereas
the possible value continuum for C4.4 is influenced by relative class balance,
the same continuum is immutable for HDDT through all possible imbalance
ratios.

3 HDDT: Hellinger Distance Decision Tree

Algorithms 1 and 2 outline how Hellinger distance is incorporated into learning
decision trees. We will refer to Hellinger distance and Hellinger distance based
decision trees as HDDT for the remainder of the paper. In our algorithm, Ti

indicates the subset of training set T which has all class i instances, Txk=j
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specifies the subset with value j for feature k, and Tk,j,i identifies the subset
with class i and has value j for feature k.

Algorithm 1 Calc Binary Hellinger
Require: Training set T , Feature f
1: Let Hellinger ← −1.
2: Let Vf be the set of values of feature f .
3: for each value v ∈ Vf do
4: Let w ← Vf \ v

5: cur value ← (
p

|Tf,v,+|/|T+| −
p

|Tf,v,−|/|T−|)2 + (
p

|Tf,w,+|/|T+| −
p

|Tf,w,−|/|T−|)2
6: if cur value > Hellinger then
7: Hellinger ← cur value
8: end if
9: end for

10: return
√

Hellinger

Note that Algorithm 1 is slightly different than the original definition of the
Hellinger splitting criterion, in that it recommends binary splits for nominal
attributes. This is due to the fact that, empirically, Hellinger distance performs
better on highly branching nominal attributes with this restriction and no
simple extension (similar to gain ratio vs information gain) exists. In the case
that a given feature is continuous, a slight variant to Algorithm 1 is used
in which Calc Binary Hellinger sorts based on the feature value, finds all
meaningful splits, calculates the binary Hellinger distance at each split, and
returns the highest distance; this is identical to the methodology used by C4.5
(and, by extension, C4.4). With this practical distance calculator, Algorithm
2 outlines the procedure for inducing Hellinger distance decision trees.

Algorithm 2 HDDT
Require: Training set T , Cut-off size C, Tree node n
1: if |T | < C then
2: return
3: end if
4: n← argmaxf Calc Binary Hellinger(T, f)
5: for each value v of b do
6: create n′, a child of n
7: HDDT (Txb=v, C, n′)
8: end for

Note that Algorithm 2 does not include any pruning or collapsing with
Hellinger distance decision trees, and we smooth the leaf frequencies with the
Laplace estimate. This was primarily motivated by the observations of Provost
and Domingos [16] on C4.5.
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4 Combining Sampling, Ensembles, and Decision trees

Sampling is a popular solution to the class imbalance problem; consequently a
number of effective sampling methods have been proposed and studied [9–13].
We compare against two popular and effective sampling methods in this pa-
per: random undersampling and Synthetic Minority Oversampling TEchnique
(SMOTE) [13]. SMOTE and undersampling have both been shown to outper-
form oversampling by replication when using decision trees. In prior work [14]
we demonstrated that a combination of undersampling and SMOTE generally
outperforms each of the individual sampling methods as well, and proposed a
wrapper method to determine the potentially optimal amounts of sampling.
In the evaluations reported here, we use the same wrapper methodology to
determine the amounts of sampling for both HDDT and C4.4. The wrap-
per discovers the sampling strategies that optimize AUC by first determining
undersampling levels for majority classes in order from largest to smallest
and then finding SMOTE levels for minority classes in order from smallest to
largest.

In addition to these sampling methods, we evaluate multiple ensemble
methods including: bagging, boosting, and majority bagging. Bagging is ap-
plied using both HDDT and C4.4 decision trees, and, to avoid any variation
in results due to the choice of bootstrap replicates, we use the same bags for
both HDDT and C4.4. When boosting, we use AdaBoost.M1 for binary class
datasets and AdaBoost.M1W for multi-class datasets as proposed by Freund
and Schapire [3]. On imbalanced datasets we also consider “majority bagging”
[33] which randomly selects examples with replacement from the original train-
ing data to generate new training samples. Unlike traditional bagging, however,
selection weights are assigned to ensure class balance in each new training bag.
In other words, to generate each bag the majority class is undersampled and
the minority class oversampled (if necessary) to generate a bag with a balanced
class distribution from an imbalanced training set.

For consistency, we chose to build all ensembles with 100 decision trees (as
recommended for boosting by Breiman [34]). The ensemble methods are also
used with the sampling strategies. To date, ensembles have not been widely
used in conjunction with sampling wrappers; hence, best practices regarding
this fusion are as yet unknown. To this end, we consider multiple permutations
for optimization, i.e., comparing the use of a single tree against an ensemble
of trees in order to select the appropriate sampling levels.

Essentially, our experimental framework includes: single trees (T), bagging
(BG), Majority Bagging (MB), AdaBoost (BT), sampling methods with pa-
rameters optimized on single trees and built with single trees, and sampling
methods with ensembles of trees. We believe our work is the most extensive
study with decision trees for imbalanced data to date.
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Table 1 Legend of method abbreviations.

GR Gain Ratio (C4.4)
HD Hellinger Distance
T Single Tree using either HD (HDDT) or GR (C4.4)

BG Bagging
BT Boosting
MB Majority Bagging
SE Balance classes with SMOTE

SW-X w/Y Optimize sampling using classifier X,
then use final classifier Y

5 Experimental Setup

In this section we outline how we compare the methods outlined previously in
Section 4. Table 1 provides the abbreviations used throughout the rest of the
paper.

5.1 Evaluation

In order to compare the methods, a total of 58 datasets (Tables 2 and 3)
were chosen from a wide variety of application areas such as finance, biology
and medicine. These datasets originate from public sources such as UCI [35],
LibSVM [36], and previous studies [7,13]. In order to measure each dataset’s
level of imbalance, we compute the coefficient of variation (CV) which provides
a measure of skew that generalizes to more than two classes [37]. Specifically,
CV is the proportion of the deviation in the observed number of examples
for each class versus the expected number of examples in each class. For our
purposes, datasets with a CV above 0.35 — a class ratio of 2:1 on a binary
dataset — are considered imbalanced. This evenly divides our pool of available
datasets into 29 balanced and 29 imbalanced datasets. When evaluating each
of the classifiers on the datasets, 5x2 cross-validation is used as recommended
by Dietterich [23]. In this procedure, each dataset is broken into class stratified
halves, allowing two experiments in which each half is once used as the training
and the other in testing. This halving is iterated five times, and the average
result over these ten repetitions is considered [38].

In this paper, we slightly modify the procedure from [14] when using the
sampling wrapper. Each training fold is further subdivided, again using the 5x2
cross-validation methodology in order to reduce the effects of variance which
may be underestimated when using 5-fold cross-validation as in the original
method [23]. Each sub-training fold thus is comprised of one quarter of the
original data, and the standard methodology in [14] is used to identify optimal
sampling levels which are in turn applied to the original training sample to
induce a final classifier evaluated on the respective testing sample.
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Table 2 Statistics for the balanced datasets used in this paper.

Dataset # Features # Classes # Examples CV

breast-w 9 2 699 0.31
bupa 6 2 345 0.16

credit-a 15 2 690 0.11
crx 15 2 690 0.11

fourclass 2 2 862 0.29
heart-c 13 2 303 0.08
heart-h 13 2 294 0.28

horse-colic 22 2 368 0.26
ion 34 2 351 0.28
krkp 36 2 3196 0.04
led-24 24 10 5000 0.03

letter-26 16 26 36000 0.03
pendigits-10 16 11 10993 0.32

pima 8 2 768 0.30
promoters 57 2 106 0.00
ringnorm 20 2 300 0.09
segment-7 19 7 2310 0.00

sonar 60 2 208 0.07
splice-libsvm 60 2 1000 0.03
SVMguide1 4 2 3089 0.29
threenorm 20 2 300 0.00
tic-tac-toe 9 2 958 0.31
twonorm 20 2 300 0.01
vehicle 18 4 846 0.04
vote 16 2 435 0.23
vote1 15 2 435 0.23
vowel 10 11 528 0.00

waveform 21 3 5000 0.01
zip 256 10 9298 0.28

5.2 Evaluation Measures

In order to compare different classifiers’ performance on a dataset, they must
be evaluated by some evaluation measure. Typically this measure is the pre-
dictive accuracy, however this measure assumes all errors are weighted equally.
This assumption is not always appropriate, e.g., when the data is imbalanced.
The Receiver Operating Characteristic (ROC) curve is a standard technique
for summarizing classifier performance on imbalanced datasets. Given this, a
popular evaluation metric is the area under the ROC curve (AUC), which
measures the probability of ranking a random positive class example over a
random negative class example. We use the rank-order formulation of AUC
which is akin to setting different thresholds on the probabilistic estimates and
generating a tpr and fpr [39]. The AUC is then calculated as, given n0 points
of class 0, n1 points of class 1, and S0 as the sum of ranks of class 0 examples

[39]: AUC = 2S0−n0(n0+1)
2n0n1

For a multiple class dataset, we average AUC over

all pairs of classes [39] using: AUCm = 2
c(c−1)

∑

i<j AUC(i, j).

One advantage of AUC is that it does not rely on any threshold. This al-
lows one to evaluate the general performance of a classifier across the different
trade-offs between the tpr and fpr at varying decision thresholds. One dis-
advantage of AUC is that it does not entirely distinguish between the curves
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Table 3 Statistics for the imbalanced datasets used in this paper.

Dataset # Features # Classes # Examples CV

bgp 9 4 24984 1.26
boundary 175 2 3505 0.93
breast-y 9 2 286 0.41

cam 132 2 18916 0.90
car 6 4 1728 1.08

compustat 20 2 13657 0.92
covtype 10 2 38500 0.86
credit-g 20 2 1000 0.40

dna 180 3 3186 0.39
estate 12 2 5322 0.76

germannumer 24 2 1000 0.40
glass 9 6 214 0.76

heart-v 13 2 200 0.49
hypo 25 2 3163 0.90
ism 6 2 11180 0.95

letter 16 2 20000 0.92
nursery 8 5 12961 0.95

oil 49 2 937 0.91
optdigits 64 2 5620 0.80

page 10 2 5473 0.80
page-5 10 5 5473 1.75

pendigits 16 2 10992 0.79
phoneme 5 2 5404 0.41
PhosS 480 2 11411 0.89

sat 36 6 6435 0.37
satimage 36 2 6430 0.81
segment 19 2 2310 0.71
shuttle 9 7 58000 1.87
splice 60 3 3190 0.39

that may cross in the ROC space. Thus, at a specific operating point classifier
A may outperform classifier B, but the overall AUC of A may be lower. Thus
choosing a classifier based on AUC may not be optimal in all cases. Under
such circumstances, the problem then becomes choosing the right operating
point. If one is working in a domain where the relative weights of class impor-
tance or costs of making errors are available, then the operating point can be
directly chosen. Often, however, this is not the case for the datasets used in
the academic literature. Hence AUC has become a popular measure of choice.

Another popular evaluation measure is F -measure. F -measure is a class of
measures which captures the harmonic mean of the precision and recall of a
classifier. In this paper, we consider the F1-measure, where equal importance
is given to both precision and recall. We consider the true positives (TP), false
positives (FP), and false negatives (FN) as defined by a standard confusion
matrix. The F1-measure is defined as: F1 = 2PR

P+R
, where P = TP

TP+FP
is

precision and R = TP
TP+FN

is recall. For multiple-class imbalanced datasets,
we applied a strategy similar to computing AUC over multiple classes, i.e., we
average F1-measure over all pairs of classes [39].

Finally, for balanced datasets we evaluate using the traditional accuracy
measure.
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5.3 Statistical Tests

Demšar [22] suggests that the best way to consider the performance of clas-
sifiers across multiple datasets is through a comparative analysis of averaged
performance ranks. As previously noted, we use accuracy to rank the methods
on balanced datasets, and AUC and F -measure for imbalanced datasets, where
rank 1 denotes the best method. The Friedman test [40] is then performed to
determine if there is a significant difference in the rankings through the Holm
procedure [41], which is a step-down approach. If this procedure determines
method A to rank statistically significantly ahead of method B across the con-
sidered datasets we may generally recommend the use of A over B. We note
that this test requires the conservation of the sum of ranks on each dataset.
Thus, in the case of a tie (scores within 0.0025) the average rank is assigned.
For example, if two classifiers tie for first, they both receive a rank of 1.5, or
if three tie for first, they each receive a rank of 2.

6 Imbalanced Datasets Results

For the sake of clarity, we divide the results into binary and n-ary imbalanced
datasets in addition to providing a combined analysis based on the two. This
differentiation is necessary as the sampling methods exhibit different perfor-
mance characteristics between cases. To account for this, each minority class
in the n-ary datasets will need to be considered separately to counter the
problem of class imbalance.

6.1 Binary Classes

Table 4 contains the results of our experiments on binary class imbalanced
datasets. The numbers reported represent the average classifier rank in terms
of AUC across all the binary class imbalanced datasets for each considered
method. An “×” next to a given method indicates that the method performs
statistically significantly worse at that column’s confidence level than the best
average classifier (in the case of Table 4 that is bagged HDDT).

From Table 4 we make the following observations when using C4.4 decision
trees for imbalanced data:
1. Sampling methods (SE, SW-T w/T), as expected, help C4.4 when learning

on the imbalanced datasets.
2. Ensemble methods (BG, BT) are statistically significantly preferred over

not only the single tree (T), but also single decision trees learned from the
sampled dataset (SE, SW-T w/T). They also drive performance improve-
ments over sampling (SW-X w/X).

3. When considering bagging (BG) in combination with the sampling wrapper
(SW-X w/Y ), we note that there is only a marginal separation of ranks
when a single tree or ensemble of classifiers is used to optimize sampling
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Table 4 AUC Ranks and statistical significance test results (at 90%, 95%, and 99% confi-
dence levels) for binary imbalanced datasets. “×” indicates a method that performs statis-
tically significantly worse than the best method in this table, i.e., bagged HDDT

Confidence
Base Learner Classifier Average Rank 90% 95% 99%

C4.4

BG 6.50
T 17.05 × × ×

BT 6.65
MB 10.45
SE 16.40 × × ×

SW-T w/T 16.65 × × ×
SW-T w/BG 8.90

SW-BG w/BG 8.15
SW-T w/BT 8.88

SW-BT w/BT 7.72

HDDT

BG 4.40
T 14.95 × × ×

BT 7.22
MB 9.20 ×
SE 15.40 × × ×

SW-T w/T 16.50 × × ×
SW-T w/BG 10.05 × ×

SW-BG w/BG 8.20
SW-T w/BT 8.55

SW-BT w/BT 8.18

levels (SW-T versus SW-BG and SW-BT ), indicating that a single tree is
a sufficient heuristic for bagging in these circumstances and may be used
in lieu of bagging in the optimization phase to conserve computational
expense.

Based on these overall results, we recommend the use of boosting, bagging, and
the sampling wrapper with boosting when using C4.4 on imbalanced datasets.

The following observations can be derived for HDDTs from Table 4:

1. A single HDDT (T) removes the need for sampling (SE, SW-T w/T). This
seems a significant result, as it shows how to learn (single) decision trees
for skewed data without sampling while still improving performance.

2. Ensemble methods (BG, MB, BT) significantly outperform the single HD-
DTs (T), as was also observed with C4.4.

3. Bagging HDDT (BG) rather than boosting (BT) is the top performer in
this set of results, and has the best overall rank among all considered
classifiers. In fact, bagged HDDTs are the best performing classifiers across
all (including C4.4 based) classifiers. We do note that bagging and boosting
both types of decision trees will typically produce favorable AUC results.

To summarize, bagging HDDT is the strongly preferred method, as it av-
erages two ranks ahead of the next best method (the C4.4 bagging solution).
This indicates that bagging will generally give the best AUC performance on
imbalanced datasets with two classes and we therefore recommend the use of
Hellinger distance decision trees with bagging when the class imbalance CV
is above 0.35. In Section 7 we extend this result by showing that no harm is
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done when using Hellinger distance decision trees with bagging when the CV
is lower than 0.35.

6.1.1 Leaf Probability Estimates

To try to understand the differing impact of splitting criteria on highly imbal-
anced binary class data, it might be useful to examine the actual probability
estimates generated by the decision tree. In this section we compare the proba-
bility estimates generated by C4.4 and HDDT, and its impact on the classifier’s
AUC performance.

In order to compare the methods, for each of the datasets we ran 5x2-
fold cross-validation. For each dataset we then determined how many leaves
predicted 1) the minority class 2) give no prediction (i.e., contain an equal
number of majority and minority class instances 3) the majority class. The
results of these tests can be found in Tables 5 and 6.

In the majority of the cases we see that the Hellinger trees produced, on
average, more leaves than the C4.4 trees. Furthermore, while for the cases
where C4.4 built deeper trees the sizes were comparable, this was not always
the case when Hellinger trees were built deeper. For the cam dataset, for
instance, the average C4.4 tree had 235.22 leaves, while the average Hellinger
tree had 1, 344 leaves. This difference shows that Hellinger trees have the
potential of growing vastly deeper trees than C4.4 is able to on the same
dataset. This enables Hellinger trees to find more fine-grained differences in
the datasets since it can better differentiate the data, as evidenced by making
more splits to further distinguish between the positive (minority) and negative
(majority) class. Previous research has demonstrated that unpruned decision
trees are more effective in their predictions on minority class, and also result
in improved calibrated estimates [16,19].

This becomes most obvious as the imbalance becomes worse (i.e., a CV
≥ 0.80, such datasets are denoted by bold in Tables 5 and 6). In such instances,
C4.4 only builds deeper trees twice (hypo and oil), and only results in higher
AUC once (letter). This is very strong evidence to the effectiveness of Hellinger
trees in highly imbalanced data, and their ability to pick out fine differences
in instances which lead to more accurate predictions overall.

In addition to building deeper trees, Hellinger trees are also better able to
create leaves which predict a class. That is, on imbalanced datasets an average
C4.4 tree creates leaves with an equal number of majority and minority class
instances 22.2% of the time, while Hellinger trees create such leaves only 16.0%
of the time. This is significant in classification scenarios, as it means that a
randomly drawn instance from the feature space is more likely to be classified
by a Hellinger tree than a C4.4 tree. This observation is equally extensible to
the case of only considering datasets where the CV ≥ 0.80, in which case C4.4
averages 18.1% of such leaves and Hellinger only 12.4%.
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C4.4 Leaf Distributions
Dataset Pred. min. Pred. equal Pred. maj. Total
boundary 955 (11.7) 3127 (38.5) 4050 (49.8) 8132
breast-y 1556 (14.6) 5896 (55.5) 3176 (29.9) 10628
cam 1576 (13.4) 3569 (30.3) 6616 (56.3) 11761
compustat 1611 (29.5) 434 (8.0) 3412 (62.5) 5457
covtype 2607 (35.9) 662 (9.1) 3996 (55.0) 7265
credit-g 5191 (24.7) 7785 (37.1) 8009 (38.2) 20985
estate 230 (19.4) 84 (7.1) 874 (73.6) 1188
germannumer 3609 (34.8) 1522 (14.7) 5248 (50.6) 10379
heart-v 1996 (64.3) 308 (9.9) 798 (25.7) 3102
hypo 1826 (63.3) 369 (12.8) 690 (23.9) 2885
ism 1104 (33.4) 303 (9.2) 1901 (57.5) 3308
letter 1529 (26.6) 677 (11.8) 3532 (61.6) 5738
oil 428 (26.4) 173 (10.7) 1023 (63.0) 1624
page 1945 (43.4) 485 (10.8) 2055 (45.8) 4485
pendigits 1562 (31.7) 460 (9.3) 2906 (59.0) 4928
phoneme 3817 (42.8) 683 (7.7) 4416 (49.5) 8916
PhosS 5415 (33.3) 3175 (19.6) 7649 (47.1) 16239
satimage 4722 (35.0) 1595 (11.8) 7174 (53.2) 13491
segment 441 (37.6) 86 (7.3) 647 (55.1) 1174
Totals 42120 (29.7) 31393 (22.2) 68172 (48.1) 141685

HDDT Leaf Distributions
Dataset Pred min. Pred equal Pred maj. Total
boundary 1983 (19.1) 1288 (12.4) 7138 (68.6) 10409
breast-y 1614 (14.7) 6194 (56.4) 3176 (28.9) 10984
cam 11793 (17.5) 10275 (15.3) 45132 (67.2) 67200
compustat 5950 (28.5) 2122 (10.2) 12794 (61.3) 20866
covtype 2983 (36.5) 870 (10.6) 4327 (52.9) 8180
credit-g 5279 (27.1) 6348 (32.6) 7861 (40.3) 19488
estate 9159 (24.9) 6304 (17.2) 21260 (57.9) 36723
germannumer 3445 (37.1) 1207 (13.0) 4639 (49.9) 9291
heart-v 1261 (52.1) 346 (14.3) 812 (33.6) 2419
hypo 1017 (51.7) 308 (15.7) 643 (32.7) 1968
ism 2108 (25.5) 1140 (13.8) 5008 (60.7) 8256
letter 1559 (26.6) 584 (9.9) 3728 (63.5) 5871
oil 397 (27.8) 147 (10.3) 885 (61.9) 1429
page 2896 (41.8) 993 (14.3) 3039 (43.9) 6928
pendigits 1259 (31.9) 404 (10.2) 2288 (57.9) 3951
phoneme 11133 (41.5) 3298 (12.3) 12388 (46.2) 26819
PhosS 8692 (25.1) 3118 (9.0) 22859 (65.9) 34669
satimage 4661 (33.7) 1349 (9.7) 7838 (56.6) 13848
segment 275 (33.3) 54 (6.5) 498 (60.2) 827
Totals 77464 (26.7) 46349 (16.0) 166313 (57.3) 290126

Table 5 Comparing the leaves of 50 C4.4 trees and 50 Hellinger trees. For each tree type, the
total number of leaves (and relative percentages) are given which predict 1) the minority class
2) give no prediction (i.e., contain an equal number of majority and minority class instances)
3) the majority class 4) the total number of leaves. Dataset names in bold indicate a CV
≥ 0.80.

6.2 Multiple Classes

Table 4 examined imbalanced data with binary classes; Table 7 repeats the
analysis for imbalanced data with more than two classes. Here we note that
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Dataset C4.4 HDDT
boundary 0.57722 (2) 0.60206 (1)
breast-y 0.60304 (1) 0.58859 (2)
cam 0.64260 (2) 0.68248 (1)
compustat 0.81276 (2) 0.83553 (1)
covtype 0.97960 (2) 0.98309 (1)
credit-g 0.68062 (1) 0.68055 (2)
estate 0.59645 (1) 0.58821 (2)
germannumer 0.69741 (2) 0.70887 (1)
heart-v 0.62668 (1) 0.58499 (2)
hypo 0.97721 (2) 0.98138 (1)
ism 0.89895 (2) 0.91360 (1)
letter 0.99518 (1) 0.99214 (2)
oil 0.81574 (2) 0.83104 (1)
page 0.97802 (2) 0.97877 (1)
pendigits 0.98781 (2) 0.99254 (1)
phoneme 0.89706 (2) 0.90443 (1)
PhosS 0.60976 (2) 0.68539 (1)
satimage 0.90868 (2) 0.91592 (1)
segment 0.98473 (2) 0.99208 (1)
rank 1.68421 1.31579

Table 6 AUC performance results (rank in parenthesis) of the experiments performed as
in Table 5. Dataset names in bold indicate a CV ≥ 0.80.

boosting C4.4 had the best rank. Though it is not statistically significantly
better than bagging or boosting with HDDT, perhaps this result indicates one
area of improvement for HDDT. Given that distance is defined as a separation
between two distributions (i.e., classes in this case), it is not trivially extensible
to multiple classes, thus creating a slight dip in the performance estimates.

6.3 Summary On All Datasets

Table 8 contains the results for all 29 imbalanced datasets combined (binary
and multiple class). As the bagged ensemble and the boosted ensemble were
the most competitive, we only show the results on the single tree, bagged
ensemble, and the boosted ensemble. Once all the datasets and methods are
combined, bagged HDDT achieves the best overall performance.

6.4 Using F1-Measure

As stated in Section 1, we wanted to evaluate HDDTs with different popular
evaluation methods to avoid possible generalization of results stemming from
one measure. To this end we present the F1-measure, which is another popular
measure for evaluation on imbalanced datasets. Again due to the performance
characteristics of the other methods, and in order to increase clarity of pre-
sentation, the point of comparison is largely restricted to ensembles, single
trees, and the sampling wrapper with a single tree. We now investigate the
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Table 7 AUC Ranks and statistical significance test results (at 90%, 95%, and 99% confi-
dence levels) for multiple class imbalanced datasets. “×” indicates a method that performs
statistically significantly worse than the best method in this table, i.e., bagged HDDT

Confidence
Base Learner Classifier Average Rank 90% 95% 99%

C4.4

BG 7.75
T 14.12 × × ×

BT 5.19
MB 7.38
SE 13.25 × × ×

SW-T w/T 16.00 × × ×
SW-T w/BG 10.25

SW-BG w/BG 10.12
SW-T w/BT 8.38

SW-BT w/BT 7.44

HDDT

BG 7.25
T 16.75 × × ×

BT 7.00
MB 7.25 ×
SE 14.88 × × ×

SW-T w/T 17.75 × × ×
SW-T w/BG 10.12 × ×

SW-BG w/BG 9.69
SW-T w/BT 10.31

SW-BT w/BT 9.12

Table 8 AUC Ranks and statistical significance test results (at 90%, 95%, and 99% confi-
dence levels) for all imbalanced datasets. “×” indicates a method that performs statistically
significantly worse than the best method in this table, i.e., bagged HDDT

Confidence
Base Learner Classifier Average Rank 90% 95% 99%

C4.4
BG 6.23
T 16.21 × × ×

BT 6.86

HDDT
BG 5.21
T 15.46 × × ×

BT 7.10

questions: Do bagged HDDTs generally outperform single HDDTs? and: Are
HDDTs superior to C4.4 (C4.5)?

Table 9 agree with the observations obtained via AUC, i.e., HDDT is su-
perior to C4.4. Bagged HDDT is significantly better than a single HDDT.

Thus, based on both AUC and F1-Measure we are able to recommend
Bagged HDDTs as the preferred method when dealing with imbalanced data.

7 Balanced Datasets Results

In addition to examining the results of several methods using gain ratio and
Hellinger distance based trees as base classifiers on imbalanced data, we also
explore performance across a number of balanced datasets to determine if there
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Table 9 F1-Measure Ranks and statistical significance test results (at 90%, 95%, and 99%
confidence levels) for all imbalanced datasets. “×” indicates a method that performs statis-
tically significantly worse than the best method in this table, i.e., boosted C4.4

Confidence
Base Learner Classifier Average Rank 90% 95% 99%

C4.4
BT 7.60
T 12.05 × × ×

BG 9.18
SW-T w/T 12.00 × × ×

HDDT
BT 7.92
T 10.55 × × ×

BG 8.62
SW-T w/T 13.30 × × ×

Table 10 Accuracy Ranks and statistical significance test results (at 90%, 95%, and 99%
confidence levels) for all balanced datasets. “×” indicates a method that performs statisti-
cally significantly worse than the best method in this table, i.e., boosted C4.5

Confidence
Base Learner Classifier Average Rank 90% 95% 99%

C4.5
BT 2.12
T 5.10 × × ×

BG 3.03

HDDT
BT 2.16
T 5.55 × × ×

BG 3.03

is the same delineation between the two splitting metrics. For the balanced
data sets, we use the original C4.5 method. Our conjecture was that the differ-
ences would diminish and both gain ratio and Hellinger distance would prove
to be comparable for balanced datasets. As before, results are reported as av-
erage performance ranks across all considered datasets. However, for balanced
datasets we used the overall accuracy performance measure, since under these
conditions it is an appropriate measure. We also greatly reduce the number
of methods considered to single tree, bagging, and boosting, since the other
methods are appropriate only to learning from imbalance datasets.

Table 10 shows the results for these experiments. Note that there was no
statistically significant difference in performance between C4.5 and HDDT,
indicating that the use of HDDT is not detrimental when applied to balanced
data. Only the single tree methods are statistically significantly worse than
the best ensemble method. This confirms the point (already well demonstrated
for gain ratio) that ensembles generally improve accuracy over single decision
trees, although this was an as yet unknown result for Hellinger distance trees.

8 Conclusion

In this paper we compared bagging, boosting, and a sampling wrapper, in ad-
dition to combinations of each method with respect to two separate splitting
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criterion for decision trees: gain ratio and Hellinger distance. An experimental
framework using 5x2 cross-validation compared AUC and F1-measure per-
formance on 29 imbalanced datasets and accuracy for 29 balanced datasets,
allowing a large-scale and robust analysis of relative performances. The Holm
procedure of the Friedman test was used to determine the significance of results
across multiple datasets.

Based on the experiments, we make a novel and practical recommendation
for learning decision trees on imbalanced data, especially binary classification
data. We demonstrated that HDDTs are robust in the presence of class imbal-
ance, and when combined with bagging they mitigate the need for sampling.
This is a compelling result, as it makes bagged HDDTs particularly relevant
for practitioners who don’t have to then concern themselves with more ex-
pensive sampling methods. We also showed that HDDTs are not significantly
worse than C4.5 for balanced datasets; thus, it is sensible to use Hellinger
distance over gain ratio even on balanced datasets.

In light of the observations within this report, we claim that Hellinger
distance decision trees are not only skew-insensitive as suggested in [7], but
also robust in their applicability to wide variety of datasets. Thus, based on
the reported findings, we recommend Hellinger distance for use in place of gain
ratio in generating decision tree splits. All the datasets and software used in
this paper are available via http://www.nd.edu/~dial/hddt.
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(a)

Synthetic example with a balanced class distribution.]
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Synthetic example with a 2:1 class distribution.]
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Fig. 2 Comparison of the effects of various class distributions on the ability of gain ratio
and Hellinger distance to correctly determine the class boundary which optimizes AUC.
Note that the Bayesian optimal split is located where the two curves intersect.


